Generalizing Schreier families to large index sets III

Christina Brech Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017

Given *F* on *κ* and *H* on *ω*, *G* on *κ* is a multiplication of *F* by *H* if every infinite sequence (*s_n*)_n in *F* has an infinite subsequence (*t_n*)_n such that, for every *x* ∈ *H*, ⋃_{n∈x} *t_n* ∈ *G*.

- Given *F* on *κ* and *H* on *ω*, *G* on *κ* is a multiplication of *F* by *H* if every infinite sequence (*s_n*)_n in *F* has an infinite subsequence (*t_n*)_n such that, for every *x* ∈ *H*, ⋃_{n∈x} *t_n* ∈ *G*.
- For any tree *T*, we consider the partial orders <_a and <_c on *T*, whose chains are sets of immediate successors of a single node and usual chains, respectively.

- Given *F* on *κ* and *H* on *ω*, *G* on *κ* is a multiplication of *F* by *H* if every infinite sequence (*s_n*)_n in *F* has an infinite subsequence (*t_n*)_n such that, for every *x* ∈ *H*, ⋃_{n∈x} *t_n* ∈ *G*.
- For any tree *T*, we consider the partial orders <_a and <_c on *T*, whose chains are sets of immediate successors of a single node and usual chains, respectively.
- Given A and C on T, $A \odot C$ is the family of finite subsets s of T such that:
 - * the chains of ⟨s⟩ with respect to <_c belong to C (as in the case of the binary tree);
 - * and for every $t \in T$, the set of immediate successors of t below some element of $\langle s \rangle$ belongs to A.

- Given *F* on *κ* and *H* on *ω*, *G* on *κ* is a multiplication of *F* by *H* if every infinite sequence (*s_n*)_n in *F* has an infinite subsequence (*t_n*)_n such that, for every *x* ∈ *H*, ⋃_{n∈x} *t_n* ∈ *G*.
- For any tree *T*, we consider the partial orders <_a and <_c on *T*, whose chains are sets of immediate successors of a single node and usual chains, respectively.
- Given A and C on T, $A \odot C$ is the family of finite subsets s of T such that:
 - * the chains of $\langle s \rangle$ with respect to $<_c$ belong to C (as in the case of the binary tree);
 - * and for every $t \in T$, the set of immediate successors of t below some element of $\langle s \rangle$ belongs to A.

Theorem 21

If $\mathcal A$ and $\mathcal C$ are hereditary and compact, then so is $\mathcal A\odot\mathcal C.$

If $(\tau_k)_k$ is a sequence of finite subtrees of T, there is a subsequence $(\tau_k)_{k \in M}$ which is a Δ -system and ...

Combinatorial analysis

The following is a consequence of the combinatorial lemma relative to the picture (Lemma 22).

Theorem 23

If \mathcal{A}_1 and \mathcal{C}_1 are a multiplication of \mathcal{A}_0 and \mathcal{C}_0 by S respectively, then $(\mathcal{A}_1 \sqcup_a [T]^{\leq 1}) \odot (\mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1)$ is a multiplication of $\mathcal{A}_0 \odot \mathcal{C}_0$ by S

Combinatorial analysis

The following is a consequence of the combinatorial lemma relative to the picture (Lemma 22).

Theorem 23

If \mathcal{A}_1 and \mathcal{C}_1 are a multiplication of \mathcal{A}_0 and \mathcal{C}_0 by S respectively, then $(\mathcal{A}_1 \sqcup_a [T]^{\leq 1}) \odot (\mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1 \sqcup_c \mathcal{C}_1)$ is a multiplication of $\mathcal{A}_0 \odot \mathcal{C}_0$ by S

Corollary 24

If there are CL-sequences on chains of $(T, <_c)$ and of $(T, <_a)$, then there is a CL-sequence on T (with any total order).

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ , κ is Mahlo cardinal iff there is no special κ -Aronszajn tree, ie. a tree (T, <) of height κ with no cofinal branches, levels have size < κ and there is $f : T \rightarrow T$ satisfying:

(1) f(t) < t for $t \in T$ except of the root;

(2) for all $t \in T$, $f^{-1}({t})$ is the union of fewer than κ many antichains.

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ , κ is Mahlo cardinal iff there is no special κ -Aronszajn tree, ie. a tree (T, <) of height κ with no cofinal branches, levels have size < κ and there is $f : T \rightarrow T$ satisfying:

- (1) f(t) < t for $t \in T$ except of the root;
- (2) for all $t \in T$, $f^{-1}({t})$ is the union of fewer than κ many antichains.

Theorem 26 (B., Lopez-Abad, Todorcevic)

If T is a special κ -Aronszajn tree and there are CL-sequences on every $\lambda < \kappa$, then there are CL-sequences on chains of $(T, <_a)$ and $(T, <_c)$. Therefore, there is a CL-sequences on T (hence, on κ).

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ , κ is Mahlo cardinal iff there is no special κ -Aronszajn tree, ie. a tree (T, <) of height κ with no cofinal branches, levels have size < κ and there is $f : T \rightarrow T$ satisfying:

- (1) f(t) < t for $t \in T$ except of the root;
- (2) for all $t \in T$, $f^{-1}({t})$ is the union of fewer than κ many antichains.

Theorem 26 (B., Lopez-Abad, Todorcevic)

If T is a special κ -Aronszajn tree and there are CL-sequences on every $\lambda < \kappa$, then there are CL-sequences on chains of $(T, <_a)$ and $(T, <_c)$. Therefore, there is a CL-sequences on T (hence, on κ).

Corollary 27

For every infinite cardinal κ below the first Mahlo cardinal, there is a CL-sequence on κ .

Given a topological space X and $Y \subseteq X$, let Y' be the set of accumulation points of Y. Let $X^{(0)} = X$ and $X^{(\alpha)} = \bigcap_{\beta < \alpha} (X^{(\beta)})'$ for $\alpha > 0$.

Given a topological space X and $Y \subseteq X$, let Y' be the set of accumulation points of Y. Let $X^{(0)} = X$ and $X^{(\alpha)} = \bigcap_{\beta < \alpha} (X^{(\beta)})'$ for $\alpha > 0$.

- The Cantor-Bendixson index of X is the smallest ordinal α such that $X^{(\alpha+1)} = X^{(\alpha)}$.
- If X is compact and scattered, then its Cantor-Bendixson index is the smallest ordinal α such that X^(α) = Ø, so that α = β + 1 for some β such that X^(β) is finite.
- For a compact family \mathcal{F} , we call β the rank of \mathcal{F} and denote it by $\mathrm{rk}(\mathcal{F})$.
- \mathcal{F} is said to be countably ranked if it has countable rank.

Given a topological space X and $Y \subseteq X$, let Y' be the set of accumulation points of Y. Let $X^{(0)} = X$ and $X^{(\alpha)} = \bigcap_{\beta < \alpha} (X^{(\beta)})'$ for $\alpha > 0$.

- The Cantor-Bendixson index of X is the smallest ordinal α such that $X^{(\alpha+1)} = X^{(\alpha)}$.
- If X is compact and scattered, then its Cantor-Bendixson index is the smallest ordinal α such that X^(α) = Ø, so that α = β + 1 for some β such that X^(β) is finite.
- For a compact family \mathcal{F} , we call β the rank of \mathcal{F} and denote it by $\mathrm{rk}(\mathcal{F})$.
- \mathcal{F} is said to be countably ranked if it has countable rank.

In the context of families on ω , we have that $rk([\omega]^{\leq n}) = n$ and $rk(\mathcal{S}) = \omega$. More complex families are the generalized Schreier families.

Example 28

A Schreier sequence is defined inductively for $\alpha < \omega_1$ by

- S₀ := [ω]^{≤1},
 S_{α+1} := S_α ⊗ S = {⋃_{k<n} s_k : n ∈ ω, s_k < s_{k+1}, s_k ∈ S_α, {min s_k : k < n} ∈ S},
 S_α := ⋃_{n<ω}(S_{αn} ↾ ω \ n) where (α_n)_n is such that sup_n α_n = α, if α
- is limit;

Example 28

A Schreier sequence is defined inductively for $\alpha < \omega_1$ by

- S₀ := [ω]^{≤1},
 S_{α+1} := S_α ⊗ S = {⋃_{k<n} s_k : n ∈ ω, s_k < s_{k+1}, s_k ∈ S_α, {min s_k : k < n} ∈ S},
 S_α := ⋃_{n<ω}(S_{αn} ↾ ω \ n) where (α_n)_n is such that sup_n α_n = α, if α
- is limit;

Exercise 1

Prove that:

(i) $\bigcup_{n \in \omega} S_n$ is not compact.

(ii) S_{α} is hereditary and compact. Moreover, $rk(S_{\alpha}) = \omega^{\alpha}$.

Fact 29

For every $\alpha < \omega_1$ and every infinite $M \subseteq \omega$, we have that

$$\operatorname{rk}(\mathcal{S}_{\alpha} \upharpoonright M) = \operatorname{rk}(\mathcal{S}_{\alpha}) = \omega^{\alpha},$$

where $\mathcal{F} \upharpoonright M := \mathcal{F} \cap \wp(M)$.

Fact 29

For every $\alpha < \omega_1$ and every infinite $M \subseteq \omega$, we have that

$$\operatorname{rk}(\mathcal{S}_{\alpha} \upharpoonright M) = \operatorname{rk}(\mathcal{S}_{\alpha}) = \omega^{\alpha},$$

where $\mathcal{F} \upharpoonright M := \mathcal{F} \cap \wp(M)$. In particular,

$$\operatorname{rk}(\mathcal{S}_{\alpha}) = \omega^{\alpha} < \iota(\omega^{\alpha}) = \iota(\operatorname{rk}(\mathcal{S}_{\alpha} \restriction M)),$$

where $\iota(\alpha)$ is the smallest exponentially-indecomposable ordinal above α .

This motivates the following definitions:

• If \mathcal{F} is a family on some index set I, let

 $\operatorname{srk}(\mathcal{F}) = \min{\operatorname{rk}(\mathcal{F} \upharpoonright M) : M \text{ is an infinite set of } I}.$

This motivates the following definitions:

• If \mathcal{F} is a family on some index set I, let

 $\operatorname{srk}(\mathcal{F}) = \min{\operatorname{rk}(\mathcal{F} \upharpoonright M) : M \text{ is an infinite set of } I}.$

• A family on I is said to be (α)-homogeneous for some $\omega \leq \alpha < \omega_1$ if

$$\alpha = \operatorname{srk}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha).$$

This motivates the following definitions:

• If \mathcal{F} is a family on some index set I, let

 $\operatorname{srk}(\mathcal{F}) = \min{\operatorname{rk}(\mathcal{F} \upharpoonright M) : M \text{ is an infinite set of } I}.$

• A family on I is said to be (α)-homogeneous for some $\omega \leq \alpha < \omega_1$ if

$$\alpha = \operatorname{srk}(\mathcal{F}) \le \operatorname{rk}(\mathcal{F}) < \iota(\alpha).$$

 A family on *I* is said to be homogeneous if it is (α)-homogeneous for some ω ≤ α < ω₁.

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n).$

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n).$

We improve the previous results and show, for example, the following:

Lemma 30

• If λ is exp-indecomposable, then

$$\operatorname{rk}(\mathcal{A}), \operatorname{rk}(\mathcal{C}) < \lambda \Rightarrow \operatorname{rk}(\mathcal{A} \odot \mathcal{C}) < \lambda.$$

• One of the following holds:

srk
$$(\mathcal{A} \odot \mathcal{C}) \leq$$
srk $_{a}(\mathcal{A})$ and $\iota($ srk $(\mathcal{A} \odot \mathcal{C})) = \iota($ srk $_{a}(\mathcal{A})),$
srk $(\mathcal{A} \odot \mathcal{C}) \leq$ srk $_{c}(\mathcal{C})$ and $\iota($ srk $(\mathcal{A} \odot \mathcal{C})) = \iota($ srk $_{c}(\mathcal{C})).$

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n).$

We improve the previous results and show, for example, the following:

Lemma 30

• If λ is exp-indecomposable, then

$$\operatorname{rk}(\mathcal{A}), \operatorname{rk}(\mathcal{C}) < \lambda \Rightarrow \operatorname{rk}(\mathcal{A} \odot \mathcal{C}) < \lambda.$$

- One of the following holds:
 - srk($\mathcal{A} \odot \mathcal{C}$) \leq srk_a(\mathcal{A}) and ι (srk($\mathcal{A} \odot \mathcal{C}$)) = ι (srk_a(\mathcal{A})), srk($\mathcal{A} \odot \mathcal{C}$) \leq srk_c(\mathcal{C}) and ι (srk($\mathcal{A} \odot \mathcal{C}$)) = ι (srk_c(\mathcal{C})).
- Thefore, $\mathcal{A} \odot \mathcal{C}$ is homogeneous, if \mathcal{A} and \mathcal{C} are.

Bases of homogeneous families

In order to get step up with homogeneous families, we replace the definitions:

- If *F* is a family on some index set *I*, let srk(*F*) = min{rk(*F* ↾ *M*) : *M* is an infinite set of *I*}.
- A family on / is said to be (α) -homogeneous for some $\omega \leq \alpha < \omega_1$ if $\alpha = \operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$.
- A family on *I* is said to be homogeneous if it is (α)-homogeneous for some ω ≤ α < ω₁.

Bases of homogeneous families

By the following ones:

- If *F* is a family on chains of some ordered set *P*, let srk_P(*F*) = min{rk(*F* ↾ *M*) : *M* is an infinite chain of *P*}.
- A family on chains of P is said to be (α, \mathcal{P}) -homogeneous for some $\omega \leq \alpha < \omega_1$ if $\alpha = \operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F}) < \iota(\alpha)$.
- A family on chains of P is said to be P-homogeneous if it is
 (α, P)-homogeneous for some ω ≤ α < ω₁.

Bases of homogeneous families

By the following ones:

- If *F* is a family on chains of some ordered set *P*, let srk_P(*F*) = min{rk(*F* ↾ *M*) : *M* is an infinite chain of *P*}.
- A family on chains of P is said to be (α, P)-homogeneous for some ω ≤ α < ω₁ if α = srk_P(F) ≤ rk(F) < ι(α).
- A family on chains of P is said to be P-homogeneous if it is
 (α, P)-homogeneous for some ω ≤ α < ω₁.

A family ${\mathcal G}$ on chains of ${\mathcal P}$ is said to be a topological multiplication of a homogeneous family ${\mathcal F}$ on chains of ${\mathcal P}$ by a homogeneous family ${\mathcal H}$ on ω if

- \mathcal{G} is homogeneous and $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H})),$
- \bullet and ${\cal G}$ is a multiplication on chains of ${\cal F}$ by ${\cal H}.$

 ${\mathfrak B}$ is a basis of homogeneous families on chains of ${\mathcal P}$ if it satisfies the following conditions:

 ${\mathfrak B}$ is a basis of homogeneous families on chains of ${\mathcal P}$ if it satisfies the following conditions:

(i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{\leq}^{\leq n}$ and α -homogeneous families for every $\alpha < \omega_1$.

 $\mathfrak B$ is a basis of homogeneous families on chains of $\mathcal P$ if it satisfies the following conditions:

- (i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{\leq}^{\leq n}$ and α -homogeneous families for every $\alpha < \omega_1$.
- (ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G}))$, then $\mathcal{F} \in \mathfrak{B}$.

 ${\mathfrak B}$ is a basis of homogeneous families on chains of ${\mathcal P}$ if it satisfies the following conditions:

- (i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{\leq}^{\leq n}$ and α -homogeneous families for every $\alpha < \omega_1$.
- (ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G}))$, then $\mathcal{F} \in \mathfrak{B}$.
- (iii) For every $\mathcal{F} \in \mathfrak{B}$ and \mathcal{H} hereditary, compact and homogeneous on ω , there is $\mathcal{G} \in \mathfrak{B}$ which is a topological multiplication of \mathcal{F} by \mathcal{S} .

 $\mathfrak B$ is a basis of homogeneous families on chains of $\mathcal P$ if it satisfies the following conditions:

- (i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{\leq}^{\leq n}$ and α -homogeneous families for every $\alpha < \omega_1$.
- (ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})) = \iota(\operatorname{srk}_{\mathcal{P}}(\mathcal{G}))$, then $\mathcal{F} \in \mathfrak{B}$.
- (iii) For every $\mathcal{F} \in \mathfrak{B}$ and \mathcal{H} hereditary, compact and homogeneous on ω , there is $\mathcal{G} \in \mathfrak{B}$ which is a topological multiplication of \mathcal{F} by \mathcal{S} .

Theorem 31

If there are bases of homogeneous families on chains of $(T, <_a)$ and $(T, <_c)$, then there is a basis of homogeneous families on T (with any total order).

Theorem 32 (B., Lopez-Abad, Todorcevic)

If T is a special κ -Aronszajn tree and there are bases on every $\lambda < \kappa$, then there are bases on chains of $(T, <_a)$ and $(T, <_c)$. Therefore, there is a basis on T (hence, on κ).

Theorem 32 (B., Lopez-Abad, Todorcevic)

If T is a special κ -Aronszajn tree and there are bases on every $\lambda < \kappa$, then there are bases on chains of $(T, <_a)$ and $(T, <_c)$. Therefore, there is a basis on T (hence, on κ).

Corollary 33

For every infinite cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ .

Problems

- What is the minimal cardinal κ such that every (reflexive) Banach space of density κ has a subsymmetric sequence?
 - * Between the first Mahlo and the first ω -Erdös cardinal.

Problems

- What is the minimal cardinal κ such that every (reflexive) Banach space of density κ has a subsymmetric sequence?
 - * Between the first Mahlo and the first ω -Erdös cardinal.
- Characterize (e.g. as colouring principle) κ such that:
 - * there is a hereditary and compact (α)-homogeneous family on κ for every $\omega \leq \alpha < \omega_1$.
 - * there is a basis of homogeneous families on κ .

Main References

- S. A. Argyros and S. Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
- C. Brech, J. Lopez-Abad, and S. Todorcevic, *Homogeneous families* on trees and subsymmetric basic sequences, preprint.
- J. Lopez-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences, Adv. Math. 242 (2013), 163–186.
- S. Todorcevic, *Walks on ordinals and their characteristics*, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007.