Generalizing Schreier families to large index sets III

Christina Brech
Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017

From previous lectures

- Given \mathcal{F} on κ and \mathcal{H} on ω, \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.

From previous lectures

- Given \mathcal{F} on κ and \mathcal{H} on ω, \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.
- For any tree T, we consider the partial orders $<_{a}$ and $<_{c}$ on T, whose chains are sets of immediate successors of a single node and usual chains, respectively.

From previous lectures

- Given \mathcal{F} on κ and \mathcal{H} on ω, \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.
- For any tree T, we consider the partial orders $<_{a}$ and $<_{c}$ on T, whose chains are sets of immediate successors of a single node and usual chains, respectively.
- Given \mathcal{A} and \mathcal{C} on $T, \mathcal{A} \odot \mathcal{C}$ is the family of finite subsets s of T such that:
* the chains of $\langle s\rangle$ with respect to $<_{c}$ belong to \mathcal{C} (as in the case of the binary tree);
* and for every $t \in T$, the set of immediate successors of t below some element of $\langle s\rangle$ belongs to \mathcal{A}.

From previous lectures

- Given \mathcal{F} on κ and \mathcal{H} on ω, \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.
- For any tree T, we consider the partial orders $<_{a}$ and $<_{c}$ on T, whose chains are sets of immediate successors of a single node and usual chains, respectively.
- Given \mathcal{A} and \mathcal{C} on $T, \mathcal{A} \odot \mathcal{C}$ is the family of finite subsets s of T such that:
* the chains of $\langle s\rangle$ with respect to $<_{c}$ belong to \mathcal{C} (as in the case of the binary tree);
* and for every $t \in T$, the set of immediate successors of t below some element of $\langle s\rangle$ belongs to \mathcal{A}.

Theorem 21

If \mathcal{A} and \mathcal{C} are hereditary and compact, then so is $\mathcal{A} \odot \mathcal{C}$.

If $\left(\tau_{k}\right)_{k}$ is a sequence of finite subtrees of T, there is a subsequence $\left(\tau_{k}\right)_{k \in M}$ which is a Δ-system and ...

Case (2.3)

Combinatorial analysis

The following is a consequence of the combinatorial lemma relative to the picture (Lemma 22).

Theorem 23
If \mathcal{A}_{1} and \mathcal{C}_{1} are a multiplication of \mathcal{A}_{0} and \mathcal{C}_{0} by \mathcal{S} respectively, then $\left(\mathcal{A}_{1} \sqcup_{a}[T] \leq 1\right) \odot\left(\mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1}\right)$ is a multiplication of $\mathcal{A}_{0} \odot \mathcal{C}_{0}$ by \mathcal{S}

Combinatorial analysis

The following is a consequence of the combinatorial lemma relative to the picture (Lemma 22).

Theorem 23
If \mathcal{A}_{1} and \mathcal{C}_{1} are a multiplication of \mathcal{A}_{0} and \mathcal{C}_{0} by \mathcal{S} respectively, then $\left(\mathcal{A}_{1} \sqcup_{a}[T] \leq 1\right) \odot\left(\mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1} \sqcup_{c} \mathcal{C}_{1}\right)$ is a multiplication of $\mathcal{A}_{0} \odot \mathcal{C}_{0}$ by \mathcal{S}

Corollary 24
If there are $C L$-sequences on chains of $\left(T,<_{c}\right)$ and of $\left(T,<_{a}\right)$, then there is a CL-sequence on T (with any total order).

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ, κ is Mahlo cardinal iff there is no special κ-Aronszajn tree, ie. a tree $(T,<)$ of height κ with no cofinal branches, levels have size $<\kappa$ and there is $f: T \rightarrow T$ satisfying:
(1) $f(t)<t$ for $t \in T$ except of the root;
(2) for all $t \in T, f^{-1}(\{t\})$ is the union of fewer than κ many antichains.

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ, κ is Mahlo cardinal iff there is no special κ-Aronszajn tree, ie. a tree $(T,<)$ of height κ with no cofinal branches, levels have size $<\kappa$ and there is $f: T \rightarrow T$ satisfying:
(1) $f(t)<t$ for $t \in T$ except of the root;
(2) for all $t \in T, f^{-1}(\{t\})$ is the union of fewer than κ many antichains.

Theorem 26 (B., Lopez-Abad, Todorcevic)
If T is a special κ-Aronszajn tree and there are CL-sequences on every $\lambda<\kappa$, then there are CL-sequences on chains of $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$. Therefore, there is a CL-sequences on T (hence, on κ).

First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ, κ is Mahlo cardinal iff there is no special κ-Aronszajn tree, ie. a tree $(T,<)$ of height κ with no cofinal branches, levels have size $<\kappa$ and there is $f: T \rightarrow T$ satisfying:
(1) $f(t)<t$ for $t \in T$ except of the root;
(2) for all $t \in T, f^{-1}(\{t\})$ is the union of fewer than κ many antichains.

Theorem 26 (B., Lopez-Abad, Todorcevic)
If T is a special κ-Aronszajn tree and there are CL-sequences on every $\lambda<\kappa$, then there are CL-sequences on chains of $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$. Therefore, there is a CL-sequences on T (hence, on κ).

Corollary 27
For every infinite cardinal κ below the first Mahlo cardinal, there is a CL-sequence on κ.

Cantor-Bendixson indices

Given a topological space X and $Y \subseteq X$, let Y^{\prime} be the set of accumulation points of Y. Let $X^{(0)}=X$ and $X^{(\alpha)}=\bigcap_{\beta<\alpha}\left(X^{(\beta)}\right)^{\prime}$ for $\alpha>0$.

Cantor-Bendixson indices

Given a topological space X and $Y \subseteq X$, let Y^{\prime} be the set of accumulation points of Y. Let $X^{(0)}=X$ and $X^{(\alpha)}=\bigcap_{\beta<\alpha}\left(X^{(\beta)}\right)^{\prime}$ for $\alpha>0$.

- The Cantor-Bendixson index of X is the smallest ordinal α such that $X^{(\alpha+1)}=X^{(\alpha)}$.
- If X is compact and scattered, then its Cantor-Bendixson index is the smallest ordinal α such that $X^{(\alpha)}=\emptyset$, so that $\alpha=\beta+1$ for some β such that $X^{(\beta)}$ is finite.
- For a compact family \mathcal{F}, we call β the rank of \mathcal{F} and denote it by $\operatorname{rk}(\mathcal{F})$.
- \mathcal{F} is said to be countably ranked if it has countable rank.

Cantor-Bendixson indices

Given a topological space X and $Y \subseteq X$, let Y^{\prime} be the set of accumulation points of Y. Let $X^{(0)}=X$ and $X^{(\alpha)}=\bigcap_{\beta<\alpha}\left(X^{(\beta)}\right)^{\prime}$ for $\alpha>0$.

- The Cantor-Bendixson index of X is the smallest ordinal α such that $X^{(\alpha+1)}=X^{(\alpha)}$.
- If X is compact and scattered, then its Cantor-Bendixson index is the smallest ordinal α such that $X^{(\alpha)}=\emptyset$, so that $\alpha=\beta+1$ for some β such that $X^{(\beta)}$ is finite.
- For a compact family \mathcal{F}, we call β the rank of \mathcal{F} and denote it by $\operatorname{rk}(\mathcal{F})$.
- \mathcal{F} is said to be countably ranked if it has countable rank. In the context of families on ω, we have that $\operatorname{rk}\left([\omega]^{\leq n}\right)=n$ and $\operatorname{rk}(\mathcal{S})=\omega$. More complex families are the generalized Schreier families.

Cantor-Bendixson indices

Example 28

A Schreier sequence is defined inductively for $\alpha<\omega_{1}$ by
(1) $\mathcal{S}_{0}:=[\omega]^{\leq 1}$,
(2) $\mathcal{S}_{\alpha+1}:=\mathcal{S}_{\alpha} \otimes \mathcal{S}$
$=\left\{\bigcup_{k<n} s_{k}: n \in \omega, s_{k}<s_{k+1}, s_{k} \in \mathcal{S}_{\alpha},\left\{\min s_{k}: k<n\right\} \in S\right\}$,
(3) $\mathcal{S}_{\alpha}:=\bigcup_{n<\omega}\left(\mathcal{S}_{\alpha_{n}} \upharpoonright \omega \backslash n\right)$ where $\left(\alpha_{n}\right)_{n}$ is such that $\sup _{n} \alpha_{n}=\alpha$, if α is limit;

Cantor-Bendixson indices

Example 28

A Schreier sequence is defined inductively for $\alpha<\omega_{1}$ by
(1) $\mathcal{S}_{0}:=[\omega]^{\leq 1}$,
(2) $\mathcal{S}_{\alpha+1}:=\mathcal{S}_{\alpha} \otimes \mathcal{S}$
$=\left\{\bigcup_{k<n} s_{k}: n \in \omega, s_{k}<s_{k+1}, s_{k} \in \mathcal{S}_{\alpha},\left\{\min s_{k}: k<n\right\} \in S\right\}$,
(3) $\mathcal{S}_{\alpha}:=\bigcup_{n<\omega}\left(\mathcal{S}_{\alpha_{n}} \upharpoonright \omega \backslash n\right)$ where $\left(\alpha_{n}\right)_{n}$ is such that $\sup _{n} \alpha_{n}=\alpha$, if α is limit;

Exercise 1

Prove that:
(i) $\bigcup_{n \in \omega} \mathcal{S}_{n}$ is not compact.
(ii) \mathcal{S}_{α} is hereditary and compact. Moreover, $\operatorname{rk}\left(\mathcal{S}_{\alpha}\right)=\omega^{\alpha}$.

Homogeneous families

Fact 29

For every $\alpha<\omega_{1}$ and every infinite $M \subseteq \omega$, we have that

$$
\operatorname{rk}\left(\mathcal{S}_{\alpha} \upharpoonright M\right)=\operatorname{rk}\left(\mathcal{S}_{\alpha}\right)=\omega^{\alpha},
$$

where $\mathcal{F} \upharpoonright M:=\mathcal{F} \cap \wp(M)$.

Homogeneous families

Fact 29

For every $\alpha<\omega_{1}$ and every infinite $M \subseteq \omega$, we have that

$$
\operatorname{rk}\left(\mathcal{S}_{\alpha} \upharpoonright M\right)=\operatorname{rk}\left(\mathcal{S}_{\alpha}\right)=\omega^{\alpha},
$$

where $\mathcal{F} \upharpoonright M:=\mathcal{F} \cap \wp(M)$.
In particular,

$$
\operatorname{rk}\left(\mathcal{S}_{\alpha}\right)=\omega^{\alpha}<\iota\left(\omega^{\alpha}\right)=\iota\left(\operatorname{rk}\left(\mathcal{S}_{\alpha} \upharpoonright M\right)\right)
$$

where $\iota(\alpha)$ is the smallest exponentially-indecomposable ordinal above α.

Homogeneous families

This motivates the following definitions:

- If \mathcal{F} is a family on some index set I, let

$$
\operatorname{srk}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M \text { is an infinite set of } I\} .
$$

Homogeneous families

This motivates the following definitions:

- If \mathcal{F} is a family on some index set I, let

$$
\operatorname{srk}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M \text { is an infinite set of } I\}
$$

- A family on I is said to be (α)-homogeneous for some $\omega \leq \alpha<\omega_{1}$ if

$$
\alpha=\operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)
$$

Homogeneous families

This motivates the following definitions:

- If \mathcal{F} is a family on some index set I, let

$$
\operatorname{srk}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M \text { is an infinite set of } I\}
$$

- A family on I is said to be (α)-homogeneous for some $\omega \leq \alpha<\omega_{1}$ if

$$
\alpha=\operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)
$$

- A family on I is said to be homogeneous if it is (α)-homogeneous for some $\omega \leq \alpha<\omega_{1}$.

Better control on indiscernibles

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Better control on indiscernibles

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$.

Better control on indiscernibles

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$.

We improve the previous results and show, for example, the following:
Lemma 30

- If λ is exp-indecomposable, then

$$
\operatorname{rk}(\mathcal{A}), \operatorname{rk}(\mathcal{C})<\lambda \Rightarrow \operatorname{rk}(\mathcal{A} \odot \mathcal{C})<\lambda
$$

- One of the following holds:

$$
\begin{aligned}
& \operatorname{srk}(\mathcal{A} \odot \mathcal{C}) \leq \operatorname{srk}_{a}(\mathcal{A}) \text { and } \iota(\operatorname{srk}(\mathcal{A} \odot \mathcal{C}))=\iota\left(\operatorname{srk}_{a}(\mathcal{A})\right) \\
& \operatorname{srk}(\mathcal{A} \odot \mathcal{C}) \leq \operatorname{srk}_{c}(\mathcal{C}) \text { and } \iota(\operatorname{srk}(\mathcal{A} \odot \mathcal{C}))=\iota\left(\operatorname{srk}_{c}(\mathcal{C})\right)
\end{aligned}
$$

Better control on indiscernibles

The homogeneity of a family gives, for example, finer information on the set of indiscernibles of the corresponding structure:

Proposition 1

If \mathcal{F} is a compact homogeneous large family on I, then we get lower and upper bounds for the rank of the collection of the (finite) subsets of indiscernibles of the structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$.

We improve the previous results and show, for example, the following:

Lemma 30

- If λ is exp-indecomposable, then

$$
\operatorname{rk}(\mathcal{A}), \operatorname{rk}(\mathcal{C})<\lambda \Rightarrow \operatorname{rk}(\mathcal{A} \odot \mathcal{C})<\lambda
$$

- One of the following holds:

$$
\begin{aligned}
& \operatorname{srk}(\mathcal{A} \odot \mathcal{C}) \leq \operatorname{srk}_{a}(\mathcal{A}) \text { and } \iota(\operatorname{srk}(\mathcal{A} \odot \mathcal{C}))=\iota\left(\operatorname{srk}_{a}(\mathcal{A})\right) \\
& \operatorname{srk}(\mathcal{A} \odot \mathcal{C}) \leq \operatorname{srk}_{c}(\mathcal{C}) \text { and } \iota(\operatorname{srk}(\mathcal{A} \odot \mathcal{C}))=\iota\left(\operatorname{srk}_{c}(\mathcal{C})\right)
\end{aligned}
$$

- Thefore, $\mathcal{A} \odot \mathcal{C}$ is homogeneous, if \mathcal{A} and \mathcal{C} are.

Bases of homogeneous families

In order to get step up with homogeneous families, we replace the definitions:

- If \mathcal{F} is a family on some index set I, let $\operatorname{srk}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M$ is an infinite set of $I\}$.
- A family on / is said to be (α)-homogeneous for some $\omega \leq \alpha<\omega_{1}$ if $\alpha=\operatorname{srk}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$.
- A family on / is said to be homogeneous if it is (α)-homogeneous for some $\omega \leq \alpha<\omega_{1}$.

Bases of homogeneous families

By the following ones:

- If \mathcal{F} is a family on chains of some ordered set P, let $\operatorname{srk}_{\mathcal{P}}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M$ is an infinite chain of $P\}$.
- A family on chains of P is said to be (α, \mathcal{P})-homogeneous for some $\omega \leq \alpha<\omega_{1}$ if $\alpha=\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$.
- A family on chains of P is said to be \mathcal{P}-homogeneous if it is (α, \mathcal{P})-homogeneous for some $\omega \leq \alpha<\omega_{1}$.

Bases of homogeneous families

By the following ones:

- If \mathcal{F} is a family on chains of some ordered set P, let $\operatorname{srk}_{\mathcal{P}}(\mathcal{F})=\min \{\operatorname{rk}(\mathcal{F} \upharpoonright M): M$ is an infinite chain of $P\}$.
- A family on chains of P is said to be (α, \mathcal{P})-homogeneous for some $\omega \leq \alpha<\omega_{1}$ if $\alpha=\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \leq \operatorname{rk}(\mathcal{F})<\iota(\alpha)$.
- A family on chains of P is said to be \mathcal{P}-homogeneous if it is (α, \mathcal{P})-homogeneous for some $\omega \leq \alpha<\omega_{1}$.

A family \mathcal{G} on chains of \mathcal{P} is said to be a topological multiplication of a homogeneous family \mathcal{F} on chains of \mathcal{P} by a homogeneous family \mathcal{H} on ω if

- \mathcal{G} is homogeneous and $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F}) \cdot \operatorname{srk}(\mathcal{H})\right)$,
- and \mathcal{G} is a multiplication on chains of \mathcal{F} by \mathcal{H}.

Second main result

\mathfrak{B} is a basis of homogeneous families on chains of \mathcal{P} if it satisfies the following conditions:

Second main result

\mathfrak{B} is a basis of homogeneous families on chains of \mathcal{P} if it satisfies the following conditions:
(i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{<}^{\leq n}$ and α-homogeneous families for every $\alpha<\omega_{1}$.

Second main result

\mathfrak{B} is a basis of homogeneous families on chains of \mathcal{P} if it satisfies the following conditions:
(i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{<}^{\leq n}$ and α-homogeneous families for every $\alpha<\omega_{1}$.
(ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)$, then $\mathcal{F} \in \mathfrak{B}$.

Second main result

\mathfrak{B} is a basis of homogeneous families on chains of \mathcal{P} if it satisfies the following conditions:
(i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{<}^{\leq n}$ and α-homogeneous families for every $\alpha<\omega_{1}$.
(ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)$, then $\mathcal{F} \in \mathfrak{B}$.
(iii) For every $\mathcal{F} \in \mathfrak{B}$ and \mathcal{H} hereditary, compact and homogeneous on ω, there is $\mathcal{G} \in \mathfrak{B}$ which is a topological multiplication of \mathcal{F} by \mathcal{S}.

Second main result

\mathfrak{B} is a basis of homogeneous families on chains of \mathcal{P} if it satisfies the following conditions:
(i) \mathfrak{B} is a collection of hereditary, compact and homogeneous families on chains of \mathcal{P} containing all cubes $[P]_{<}^{\leq n}$ and α-homogeneous families for every $\alpha<\omega_{1}$.
(ii) \mathfrak{B} is closed under \cup and $\sqcup_{\mathcal{P}}$ and if $\mathcal{F} \subseteq \mathcal{G} \in \mathfrak{B}$ is such that $\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{F})\right)=\iota\left(\operatorname{srk}_{\mathcal{P}}(\mathcal{G})\right)$, then $\mathcal{F} \in \mathfrak{B}$.
(iii) For every $\mathcal{F} \in \mathfrak{B}$ and \mathcal{H} hereditary, compact and homogeneous on ω, there is $\mathcal{G} \in \mathfrak{B}$ which is a topological multiplication of \mathcal{F} by \mathcal{S}.

Theorem 31
If there are bases of homogeneous families on chains of $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$, then there is a basis of homogeneous families on T (with any total order).

Second main result

Theorem 32 (B., Lopez-Abad, Todorcevic)
If T is a special κ-Aronszajn tree and there are bases on every $\lambda<\kappa$, then there are bases on chains of $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$. Therefore, there is a basis on T (hence, on κ).

Second main result

Theorem 32 (B., Lopez-Abad, Todorcevic)
If T is a special κ-Aronszajn tree and there are bases on every $\lambda<\kappa$, then there are bases on chains of $\left(T,<_{a}\right)$ and $\left(T,<_{c}\right)$. Therefore, there is a basis on T (hence, on κ).

Corollary 33

For every infinite cardinal κ below the first Mahlo cardinal, there is a basis of homogeneous families on κ.

Problems

- What is the minimal cardinal κ such that every (reflexive) Banach space of density κ has a subsymmetric sequence?
* Between the first Mahlo and the first ω-Erdös cardinal.

Problems

- What is the minimal cardinal κ such that every (reflexive) Banach space of density κ has a subsymmetric sequence?
* Between the first Mahlo and the first ω-Erdös cardinal.
- Characterize (e.g. as colouring principle) κ such that:
* there is a hereditary and compact (α)-homogeneous family on κ for every $\omega \leq \alpha<\omega_{1}$.
* there is a basis of homogeneous families on κ.

Main References

S. A. Argyros and S. Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
R. Brech, J. Lopez-Abad, and S. Todorcevic, Homogeneous families on trees and subsymmetric basic sequences, preprint.
R. Lopez-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences, Adv. Math. 242 (2013), 163-186.

囯 S. Todorcevic, Walks on ordinals and their characteristics, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007.

