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From previous lectures

Given F on κ and H on ω, G on κ is a multiplication of F by H if
every infinite sequence (sn)n in F has an infinite subsequence (tn)n
such that, for every x ∈ H,

⋃
n∈x tn ∈ G.

For any tree T , we consider the partial orders <a and <c on T ,
whose chains are sets of immediate successors of a single node and
usual chains, respectively.

Given A and C on T , A�C is the family of finite subsets s of T such
that:

* the chains of 〈s〉 with respect to <c belong to C (as in the case of the
binary tree);

* and for every t ∈ T , the set of immediate successors of t below some
element of 〈s〉 belongs to A.

Theorem 21

If A and C are hereditary and compact, then so is A� C.
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If (τk)k is a sequence of finite subtrees of T , there is a subsequence (τk)k∈M

which is a ∆-system and ...



Combinatorial analysis

The following is a consequence of the combinatorial lemma relative to the
picture (Lemma 22).

Theorem 23

If A1 and C1 are a multiplication of A0 and C0 by S respectively, then
(A1 ta [T ]≤1)� (C1 tc C1 tc C1 tc C1 tc C1) is a multiplication of A0 �C0
by S

Corollary 24

If there are CL-sequences on chains of (T , <c) and of (T , <a), then there
is a CL-sequence on T (with any total order).
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First main result

Theorem 25 (Todorcevic)

For every strongly inaccessible cardinal κ, κ is Mahlo cardinal iff there is
no special κ-Aronszajn tree, ie. a tree (T , <) of height κ with no cofinal
branches, levels have size < κ and there is f : T → T satisfying:

(1) f (t) < t for t ∈ T except of the root;

(2) for all t ∈ T , f −1({t}) is the union of fewer than κ many antichains.

Theorem 26 (B., Lopez-Abad, Todorcevic)

If T is a special κ-Aronszajn tree and there are CL-sequences on every
λ < κ, then there are CL-sequences on chains of (T , <a) and (T , <c).
Therefore, there is a CL-sequences on T (hence, on κ).

Corollary 27

For every infinite cardinal κ below the first Mahlo cardinal, there is a
CL-sequence on κ.
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Cantor-Bendixson indices

Given a topological space X and Y ⊆ X , let Y ′ be the set of accumulation
points of Y . Let X (0) = X and X (α) =

⋂
β<α(X (β))′ for α > 0.

The Cantor-Bendixson index of X is the smallest ordinal α such that
X (α+1) = X (α).

If X is compact and scattered, then its Cantor-Bendixson index is the
smallest ordinal α such that X (α) = ∅, so that α = β + 1 for some β
such that X (β) is finite.

For a compact family F , we call β the rank of F and denote it by
rk(F).

F is said to be countably ranked if it has countable rank.

In the context of families on ω, we have that rk([ω]≤n) = n and
rk(S) = ω. More complex families are the generalized Schreier families.
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Cantor-Bendixson indices

Example 28

A Schreier sequence is defined inductively for α < ω1 by

1 S0 := [ω]≤1,

2 Sα+1 := Sα ⊗ S
= {

⋃
k<n sk : n ∈ ω, sk < sk+1, sk ∈ Sα, {min sk : k < n} ∈ S},

3 Sα :=
⋃

n<ω(Sαn � ω \ n) where (αn)n is such that supn αn = α, if α
is limit;

Exercise 1

Prove that:

(i)
⋃

n∈ω Sn is not compact.

(ii) Sα is hereditary and compact. Moreover, rk(Sα) = ωα.
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Homogeneous families

Fact 29

For every α < ω1 and every infinite M ⊆ ω, we have that

rk(Sα � M) = rk(Sα) = ωα,

where F � M := F ∩ ℘(M).

In particular,
rk(Sα) = ωα < ι(ωα) = ι(rk(Sα � M)),

where ι(α) is the smallest exponentially-indecomposable ordinal above α.
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Homogeneous families

This motivates the following definitions:

If F is a family on some index set I , let

srk(F) = min{rk(F � M) : M is an infinite set of I}.

A family on I is said to be (α)-homogeneous for some ω ≤ α < ω1 if

α = srk(F) ≤ rk(F) < ι(α).

A family on I is said to be homogeneous if it is (α)-homogeneous for
some ω ≤ α < ω1.
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Better control on indiscernibles

The homogeneity of a family gives, for example, finer information on the set of
indiscernibles of the corresponding structure:

Proposition 1

If F is a compact homogeneous large family on I , then we get lower and upper
bounds for the rank of the collection of the (finite) subsets of indiscernibles of the
structure MF := (I , (F ∩ [I ]n)n).

We improve the previous results and show, for example, the following:

Lemma 30

If λ is exp-indecomposable, then

rk(A), rk(C) < λ⇒ rk(A� C) < λ.

One of the following holds:

I srk(A� C) ≤ srka(A) and ι(srk(A� C)) = ι(srka(A)),
I srk(A� C) ≤ srkc(C) and ι(srk(A� C)) = ι(srkc(C)).

Thefore, A� C is homogeneous, if A and C are.
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Bases of homogeneous families

In order to get step up with homogeneous families, we replace the
definitions:

If F is a family on some index set I , let
srk(F) = min{rk(F � M) : M is an infinite set of I}.
A family on I is said to be (α)-homogeneous for some ω ≤ α < ω1 if
α = srk(F) ≤ rk(F) < ι(α).

A family on I is said to be homogeneous if it is (α)-homogeneous for
some ω ≤ α < ω1.



Bases of homogeneous families

By the following ones:

If F is a family on chains of some ordered set P, let
srkP(F) = min{rk(F � M) : M is an infinite chain of P}.
A family on chains of P is said to be (α,P)-homogeneous for some
ω ≤ α < ω1 if α = srkP(F) ≤ rk(F) < ι(α).

A family on chains of P is said to be P-homogeneous if it is
(α,P)-homogeneous for some ω ≤ α < ω1.

A family G on chains of P is said to be a topological multiplication of a
homogeneous family F on chains of P by a homogeneous family H on ω if

G is homogeneous and ι(srkP(G)) = ι(srkP(F) · srk(H)),

and G is a multiplication on chains of F by H.
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Second main result

B is a basis of homogeneous families on chains of P if it satisfies the
following conditions:

(i) B is a collection of hereditary, compact and homogeneous families on
chains of P containing all cubes [P]≤n< and α-homogeneous families
for every α < ω1.

(ii) B is closed under ∪ and tP and if F ⊆ G ∈ B is such that
ι(srkP(F)) = ι(srkP(G)), then F ∈ B.

(iii) For every F ∈ B and H hereditary, compact and homogeneous on ω,
there is G ∈ B which is a topological multiplication of F by S.

Theorem 31

If there are bases of homogeneous families on chains of (T , <a) and
(T , <c), then there is a basis of homogeneous families on T (with any
total order).
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Second main result

Theorem 32 (B., Lopez-Abad, Todorcevic)

If T is a special κ-Aronszajn tree and there are bases on every λ < κ, then
there are bases on chains of (T , <a) and (T , <c). Therefore, there is a
basis on T (hence, on κ).

Corollary 33

For every infinite cardinal κ below the first Mahlo cardinal, there is a basis
of homogeneous families on κ.
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Problems

What is the minimal cardinal κ such that every (reflexive) Banach
space of density κ has a subsymmetric sequence?

* Between the first Mahlo and the first ω-Erdös cardinal.

Characterize (e.g. as colouring principle) κ such that:

* there is a hereditary and compact (α)-homogeneous family on κ for
every ω ≤ α < ω1.

* there is a basis of homogeneous families on κ.
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